3D Printing Disrupting Personalized Medicine, Finds IDTechEx Research

January 25, 2019

From its humble beginnings in the late 1980s, through to the global force that it is today, the capabilities of 3D printing technology have expanded dramatically, to establish itself as an attractive manufacturing solution for prototyping and production. Conferring advantages such as shorter lead times, reduced waste and opportunity for mass customisation, the potential of 3D printing was quickly realised and has gone from strength to strength since. One of the key industries to have successfully leveraged these advantages is the medical and dental industry. In the IDTechEx Research report, 3D Printing in the Medical and Dental Industry 2019 – 2029, 3D printing in the medical and dental industry is forecast to be worth over $8.1 billion by 2029.

 3D printing streamlines the production of personalized medical devices

3D printing allows the production of a wide range of devices such as hearing aids to Invisalign® aligners to prosthetic limbs. Use of 3D printing in these applications leverage its ability for mass customization from 3D imaging data. Personalization is particularly important to medical devices designed to be worn by the patient for extended time, as this improves patient comfort, and with that, adherence to the treatment. No manufacturing process in the medical sector has been as disrupted by 3D printing as that of the hearing aid. 3D printed hearing aids are made with digital precision, an improvement over the lengthy hand-crafting process that sometimes resulted in pieces that were not perfectly fitted. This is important where less than a millimetre of difference can lead to discomfort for the wearer. Thus, adoption of 3D printing has not only streamlined but also enhanced the manufacturing process. Given these benefits, 3D printing is gaining popularity in the field of dentistry, and is also emerging as a method of manufacture for several other medical devices where customization is key to improved patient comfort and improved therapeutic outcomes.      

3D printing improves surgical outcomes

The range of applications is not limited to the manufacture of medical devices. 3D printing is also used extensively in surgical procedures, whether in the creation of patient-specific 3D models for teaching, planning and visualization, intraoperative surgical guides, disposable surgical instrumentation, or custom plates, implants, valves, and stents to be implanted into the patient. 3D printing advances surgical standards and improves efficiency, resulting in improved surgical outcomes for the patient. 3D printed implants are durable, lightweight and customized to fit the patient for better functional and aesthetic outcomes.

3D printing will provide personalized medicine

The range of applications is not limited to medical devices or surgery. 3D printing can used to manufacture pharmaceuticals, such as patient-specific pills. Personalized medication is especially promising in disrupting the way we treat chronic conditions, by helping patients streamline the number of pills that they must take, and by creating patient-specific dosages that will limit the unwanted side effects experienced. Moreover, as the development of 3D bioprinting continues to evolve, there is scope for the implantation of personalized organs as part of regenerative medicine.

3D Printing in the Medical and Dental Industry 2019 – 2029

IDTechEx’s recently published research report, 3D Printing in the Medical and Dental Industry 2019 – 2029 draws from extensive IDTechEx expertise within the field of 3D printing.  IDTechEx analysis of 3D printing and 3D bioprinting technologies, as well as 3D printing materials and 3D printing software, is provided in context of medical and dental applications. A 10-year market forecast for 3D printed medical devices and 3D bioprinting is also provided, which is accompanied by IDTechEx market and regulatory outlooks.

The report is organized by the following key topics:

-          Surgical tools, guides, and models

-          Implantable devices

-          Dental tools, models, and prosthetics

-          Orthoses, protheses and other medical devices

-          Pharmaceuticals

-          Living tissues

Each stand-alone chapter includes the motivations and restraints of adopting 3D printing, analysis of commonly used 3D printing technologies and 3D printing materials, detailed applications and case studies, and a discussion of specific regulatory concerns.

To find out more contact research@IDTechEx.com or visit www.IDTechEx.com/3Dmed.

See the latest posts on our homepage


Share

Topic Area: Press Release


Recent Posts
Recent Posts

Third baby dies in Glasgow after contracting hospital infection


Two extremely premature babies have already died at the Princess Royal Maternity Hospital

4/18/2019

Healthcare facility staffers have had enough of workplace violence


Groups representing doctors and nurses calling for changes

4/18/2019

Nursing homes using special soap on patients to fight drug-resistant germs


At least 2 million people in the U.S. become infected with an antibiotic-resistant bacteria every year

4/18/2019

Baltimore area hospitals bar youth visitors amid measles concerns


With a case of the measles reported, a health system is not allowing visitors under the age of 14

4/18/2019

Focus: Energy Efficiency

Emory University Hospital Tower awarded LEED Silver


The building meets standards for air quality, energy efficiency and for using locally sourced materials

4/18/2019





Post Comment




FREE
NEWSLETTER

News & Updates • Webcast Alerts • Building Technologies

All fields are required.