Anodized Aluminum Surfaces May Help Minimize Surface Pathogen Collection


During this health emergency, material engineers have been actively discussing materials that may help to prevent the ability of bacteria and germs to cling to surfaces.

Some interesting studies have come to light – which we think may be useful to those planning projects and investigating what type of material to use for surfaces.

One of the most interesting references appeared in the Cornell Chronical in 2015. The article discusses a new tech application that keeps bacteria from sticking to surfaces; a technology that uses anodization which can help minimize biofilm formation.  The technology was developed by researchers from Cornell University and Rensselaer Polytechnic Institute. The article detailing the groundbreaking research originally appeared in the journal Biofouling, The Journal of Bio adhesion and Biofilm Research, Volume 30, 2014, Issue 101.

While the work is still preliminary, engineers and application experts at Lorin believe that anodized aluminum might well be a preferred surface when it comes to finding opportunities to minimize bacterial collection. Lorin worked with an independent lab to test the antimicrobial properties of Anodized Aluminum. Samples of three of Lorin products were tested using JIS Z 2801:2010 Antimicrobial Products – Test for Activity and Efficacy2.  A solution with bacteria was put on the surface of the anodized aluminum and incubated for 24 hours at 35°C.  The concentration of the bacteria was measured at the start and end of the incubation period. Testing with Escherichia coli showed a reduction in concentration of the bacteria 74% to 99.7%. Testing with Staphylococcus aureus showed a reduction in concentration of the bacteria from 74% to 87%.

In addition, the Journal of Hospital Infection conducted testing on a variety of surfaces to see how long bacteria and viruses can survive and aluminum showed to only provide 2-8 hours of life on its surface3

By Ed Dahlquist, Lorin Industries, Inc.

1 [Citation: Guoping Feng, Yifan Cheng, Shu-Yi Wang, Lillian C. Hsu, Yazmin Feliz, Diana A. Borca-Tasciuc, Randy W. Worobo & Carmen I. Moraru (2014) Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp., Biofouling, 30:10, 1253-1268, DOI: 10.1080/08927014.2014.976561.]

2 [These test results are from [MicroStar Lab] which is a third party lab in coordination with Jim Nalewick Technical Director, Lorin Industries, Inc. 6/4/2015.]

3 [www.elsevier.com/locate/jhin, Journal of Hospital Infection.]

You can purchase the first source full article at: https://www.tandfonline.com/doi/full/10.1080/08927014.2014.976561?scroll=top&needAccess=true]

 



July 13, 2020


Topic Area: Press Release


Recent Posts

Case Study: How NYU Langone Rebuilt for Resilience After Superstorm Sandy

Although the damage was severe, it provided a valuable opportunity for NYU Langone to assess structural vulnerabilities and increase facility resilience.


Frederick Health Hospital Faces 5 Lawsuits Following Ransomware Attack

The lawsuits accuse FHH of inadequate cybersecurity, poor breach notification and failing to protect patients from identity theft risks.


Arkansas Methodist Medical Center and Baptist Memorial Health Care to Merge

They have signed a non-binding letter of intent to complete a shared mission agreement to merge the two organizations.


Ground Broken on Intermountain Saratoga Springs Multi-Specialty Clinic

The clinic is scheduled to open and start seeing patients in the fall of 2026.


Electrical Fire Tests Resilience of Massachusetts Hospital

Signature Healthcare Brockton Hospital used opportunity to renovate key systems and components and expand facility operations.


 
 


FREE Newsletter Signup Form

News & Updates | Webcast Alerts
Building Technologies | & More!

 
 
 


All fields are required. This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.