Anodized Aluminum Surfaces May Help Minimize Surface Pathogen Collection

July 13, 2020

During this health emergency, material engineers have been actively discussing materials that may help to prevent the ability of bacteria and germs to cling to surfaces.

Some interesting studies have come to light – which we think may be useful to those planning projects and investigating what type of material to use for surfaces.

One of the most interesting references appeared in the Cornell Chronical in 2015. The article discusses a new tech application that keeps bacteria from sticking to surfaces; a technology that uses anodization which can help minimize biofilm formation.  The technology was developed by researchers from Cornell University and Rensselaer Polytechnic Institute. The article detailing the groundbreaking research originally appeared in the journal Biofouling, The Journal of Bio adhesion and Biofilm Research, Volume 30, 2014, Issue 101.

While the work is still preliminary, engineers and application experts at Lorin believe that anodized aluminum might well be a preferred surface when it comes to finding opportunities to minimize bacterial collection. Lorin worked with an independent lab to test the antimicrobial properties of Anodized Aluminum. Samples of three of Lorin products were tested using JIS Z 2801:2010 Antimicrobial Products – Test for Activity and Efficacy2.  A solution with bacteria was put on the surface of the anodized aluminum and incubated for 24 hours at 35°C.  The concentration of the bacteria was measured at the start and end of the incubation period. Testing with Escherichia coli showed a reduction in concentration of the bacteria 74% to 99.7%. Testing with Staphylococcus aureus showed a reduction in concentration of the bacteria from 74% to 87%.

In addition, the Journal of Hospital Infection conducted testing on a variety of surfaces to see how long bacteria and viruses can survive and aluminum showed to only provide 2-8 hours of life on its surface3

By Ed Dahlquist, Lorin Industries, Inc.

1 [Citation: Guoping Feng, Yifan Cheng, Shu-Yi Wang, Lillian C. Hsu, Yazmin Feliz, Diana A. Borca-Tasciuc, Randy W. Worobo & Carmen I. Moraru (2014) Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp., Biofouling, 30:10, 1253-1268, DOI: 10.1080/08927014.2014.976561.]

2 [These test results are from [MicroStar Lab] which is a third party lab in coordination with Jim Nalewick Technical Director, Lorin Industries, Inc. 6/4/2015.]

3 [www.elsevier.com/locate/jhin, Journal of Hospital Infection.]

You can purchase the first source full article at: https://www.tandfonline.com/doi/full/10.1080/08927014.2014.976561?scroll=top&needAccess=true]

 

See the latest posts on our homepage


Share

Topic Area: Press Release


Recent Posts
Recent Posts

Pennsylvania Nursing Homes' Second COVID-19 Wave Linked To Mistakes


The Centers for Disease Control and Prevention expects a second wave to start in the fall, during the traditional flu season, but the increase seen in Pennsylvania has begin early

8/6/2020

Healthcare FMs Challenged with Unified Response for Facilities Nationwide


Varied responses offer an opportunity to learn and share best practices across geographies that much more quickly

8/6/2020

Mayo Clinic Invests $1M To Expand Telehealth


Expansive telemedicine network available to treat COVID-19 patients

8/6/2020

FEMA Sends Gowns Without Arm Holes And Strapless Masks To Care Homes


$134 million shipment to frontline workers included ‘glorified garbage bag gowns’

8/6/2020

California Hospital Weathering Supply Chain Challenges


Sierra Nevada Memorial Hospital’s parent company acquired stake in PPE manufacturer

8/6/2020





Post Comment




FREE
NEWSLETTER

News & Updates • Webcast Alerts • Building Technologies

All fields are required.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.